skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chundawat, Shishir PS"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The analysis of particles bound to surfaces by tethers can facilitate understanding of biophysical phenomena (e.g., DNA–protein or protein–ligand interactions and DNA extensibility). Modeling such systems theoretically aids in understanding experimentally observed motions, and the limitations of such models can provide insight into modeling complex systems. The simulation of tethered particle motion (TPM) allows for analysis of complex behaviors exhibited by such systems; however, this type of experiment is rarely taught in undergraduate science classes. We have developed a MATLAB simulation package intended to be used in academic contexts to concisely model and graphically represent the behavior of different tether–particle systems. We show how analysis of the simulation results can be used in biophysical research using single-molecule force spectroscopy (SMFS). Students in physics, engineering, and chemistry will be able to make connections with principles embedded in the field of study and understand how those principles can be used to create meaningful conclusions in a multidisciplinary context. The simulation package can model any given tether–particle system and allows the user to generate a parameter space with static and dynamic model components. Our simulation was successfully able to recreate generally observed experimental trends by using acoustic force spectroscopy (AFS). Further, the simulation was validated through consideration of the conservation of energy of the tether–bead system, trend analyses, and comparison of particle positional data from actual TPM in silico experiments conducted to simulate data with a parameter space similar to the AFS experimental setup. Overall, our TPM simulator and graphical user interface is primarily for demonstrating behaviors characteristic to TPM in a classroom setting but can serve as a template for researchers to set up TPM simulations to mimic a specific SMFS experimental setup. 
    more » « less
  2. The production of biofuels from lignocellulosic biomass using carbohydrate-active enzymes like cellulases is key to a sustainable energy production. Understanding the adsorption mechanism of cellulases and associated binding domain proteins down to the molecular level details will help in the rational design of improved cellulases. In nature, carbohydrate-binding modules (CBMs) from families 17 and 28 often appear in tandem appended to the C-terminus of several endocellulases. Both CBMs are known to bind to the amorphous regions of cellulose non-competitively and show similar binding affinity towards soluble cello-oligosaccharides. Based on the available crystal structures, these CBMs may display a uni-directional binding preference towards cello-oligosaccharides (based on how the oligosaccharide was bound within the CBM binding cleft). However, molecular dynamics (MD) simulations have indicated no such clear preference. Considering that most soluble oligosaccharides are not always an ideal substrate surrogate to study the binding of CBMs to the native cell wall or cell surface displayed glycans, it is critical to use alternative reagents or substrates. To better understand the binding of type B CBMs towards smaller cello-oligosaccharides, we have developed a simple solid-state depletion or pull-down binding assay. Here, we specifically orient azido-labeled carbohydrates from the reducing end to alkyne-labeled micron-sized bead surfaces, using click chemistry, to mimic insoluble cell wall surface-displayed glycans. Our results reveal that both family 17 and 28 CBMs displayed a similar binding affinity towards cellohexaose-modified beads, but not cellopentaose-modified beads, which helps rationalize previously reported crystal structure and MD data. This may indicate a preferred uni-directional binding of specific CBMs and could explain their co-evolution as tandem constructs appended to endocellulases to increase amorphous cellulose substrate targeting efficiency. Overall, our proposed workflow can be easily translated to measure the affinity of glycan-binding proteins to click-chemistry based immobilized surface-displayed carbohydrates or antigens. 
    more » « less
  3. Shukla, Arun K (Ed.)
    Glycosynthases are mutant glycosyl hydrolases that can synthesize glycosidic bonds between acceptor glycone/aglycone groups and activated donor sugars with suitable leaving groups (e.g., azido, fluoro). However, it has been challenging to rapidly detect glycosynthase reaction products involving azido sugars as donor sugars. This has limited our ability to apply rational engineering and directed evolution methods to rapidly screen for improved glycosynthases that are capable of synthesizing bespoke glycans. Here, we outline our recently developed screening methodologies for rapidly detecting glycosynthase activity using a model fucosynthase enzyme engineered to be active on fucosyl azide as donor sugar. We created a diverse library of fucosynthase mutants using semi-random and random error prone mutagenesis and then identified improved fucosynthase mutants with desired activity using two distinct screening methods developed by our group to detect glycosynthase activity (i.e., by detecting azide formed upon completion of fucosynthase reaction); (a) pCyn-GFP regulon method, and (b) Click chemistry method. Finally, we provide some proof-of-concept results illustrating the utility of both these screening methods to rapidly detect products of glycosynthase reactions involving azido sugars as donor groups. 
    more » « less
  4. null (Ed.)